> 数学 >
函数在闭区间[a,b]上连续,在开区间(a,b)内可导,f(a)=f(b)=0,证明至少有一点x在(a,b)内,
使得f(x)+X*f'(x)=0
人气:415 ℃ 时间:2019-10-28 17:27:18
解答
令F(t)=tf(t)
则F'(t)=f(t)+tf'(t)
因为f(a)=f(b)=0,
所以F(a)=af(a)=0
F(b)=bf(b)=0
故由罗尔定理,至少有一点x在(a,b)内,使F'(x)=0,即f(x)+x*f'(x)=0
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版