函数在闭区间[a,b]上连续,在开区间(a,b)内可导,f(a)=f(b)=0,证明至少有一点x在(a,b)内,
使得f(x)+X*f'(x)=0
人气:415 ℃ 时间:2019-10-28 17:27:18
解答
令F(t)=tf(t)
则F'(t)=f(t)+tf'(t)
因为f(a)=f(b)=0,
所以F(a)=af(a)=0
F(b)=bf(b)=0
故由罗尔定理,至少有一点x在(a,b)内,使F'(x)=0,即f(x)+x*f'(x)=0
推荐
- 设函数f(x)在闭区间[a,b]上连续,且f(a)b,证明在开区间(a,b)内至少有一个点x,使得f(x)=x
- 设函数f(x)在闭区间【0.1】上连续,在【0.1】内可导,f(0)=0,f(1)=1,证明
- 设函数f(x)在闭区间(0,2)上连续,在(0,2)上可导,且f(1)=1,f(0)=f(2)=0,证明:存在a属于(0,2),使得f(a)'+f(a)=1
- 设函数f(x)在闭区间[0,1]上连续,且0
- 设函数f(x)在闭区间【0.1】上连续,在【0.1】内可导,f(0)=0,f(1)=1,证明存在ξε(0,1),使得f(ξ)+f′(ξ)=0
- 一项工程,如果甲单独做6天可以完成这项工程的二分之一,如果乙单独做10天完成这项工程,现在甲、乙合作
- 什么的大海(形容词)
- 一个平行四边形的面积是625平方米,它的边长是多少米?
猜你喜欢
- 清朝九门提督相当于现在的什么官职?
- Japan is _the east of China.A,to B,on ,in选择?为什么?
- 一个数的小数点先向左移动一位,又向右移动了三位后,所得到的数比原数大495,原来这个数是多少?
- There isn't so much pollution in the coiuntry () in big cities
- The story is ___ interesting that many children enjoy it.
- 补充成语;()()不论
- 我们的生活水平不断改善这句话有什么毛病
- 工地上运到一批水泥,第一次搬了30袋,第二次搬了50袋,还剩下这批水泥的七分之三没搬,这批水泥共有多少袋