函数在闭区间[a,b]上连续,在开区间(a,b)内可导,f(a)=f(b)=0,证明至少有一点x在(a,b)内,
使得f(x)+X*f'(x)=0
人气:409 ℃ 时间:2019-10-28 17:27:18
解答
令F(t)=tf(t)
则F'(t)=f(t)+tf'(t)
因为f(a)=f(b)=0,
所以F(a)=af(a)=0
F(b)=bf(b)=0
故由罗尔定理,至少有一点x在(a,b)内,使F'(x)=0,即f(x)+x*f'(x)=0
推荐
- 设函数f(x)在闭区间[a,b]上连续,且f(a)b,证明在开区间(a,b)内至少有一个点x,使得f(x)=x
- 设函数f(x)在闭区间【0.1】上连续,在【0.1】内可导,f(0)=0,f(1)=1,证明
- 设函数f(x)在闭区间(0,2)上连续,在(0,2)上可导,且f(1)=1,f(0)=f(2)=0,证明:存在a属于(0,2),使得f(a)'+f(a)=1
- 设函数f(x)在闭区间[0,1]上连续,且0
- 设函数f(x)在闭区间【0.1】上连续,在【0.1】内可导,f(0)=0,f(1)=1,证明存在ξε(0,1),使得f(ξ)+f′(ξ)=0
- 电磁波中每一处的电场强度和磁感应强度总是相互垂直的,且与波的传播方向垂直. 用高中物理知识解释一下.
- 开始提问
- 他真希望这架飞机是他的用英语怎么说
猜你喜欢