> 数学 >
设a∈R,若函数y=e^(ax)+3x(x>0)存在极值,则a取值范围为.还有e^-x的导数为什么等于-e^-x.
人气:354 ℃ 时间:2020-03-27 13:26:08
解答
首先求导数:
a乘以e^(ax)+3(x大于0)
有极值的话就是导函数=0
此时x=1/a乘以 ln(-3/a)
因为x大于0,所以1/a乘以 ln(-3/a)大于0
首先a必须小于0,此时1/a一定小于0,所以 ln(-3/a)小于0,-3/a大于0小于1
此时,a的范围就是小于-3a乘以e^(ax)+3=0怎么到、、x=1/a乘以 ln(-3/a)e^(ax)=-3 /a两边取lnax=ln(-3/a)所以x=1/a乘以ln(-3/a)
推荐
猜你喜欢
© 2025 79432.Com All Rights Reserved.
电脑版|手机版