> 数学 >
设f (x)在x=0处可导,且f (0)=0,求证:lim(x→∞)f (tx)-f (x)/x=(t-1)f' (0)
人气:243 ℃ 时间:2020-04-02 09:08:20
解答
确定是x→∞ 这样极限时0/∞型=0 如果是x→0有:
lim(x→0 )[f(tx)-f (x)]/x (0/0 洛必塔法则)
=lim(x→0 )[t*f'(tx)-f'(x)]
=t*f'(0)-f'(0) (代入x=0)
=(t-1)f'(0)
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版