已知AD为三角形ABC的一条中线,点E在边AC上,且满足向量AE=1/4向量AC,AD和BE交于点O,若以向量AB和BC为基
已知AD为三角形ABC的一条中线,点E在边AC上,且满足向量AE=1/4向量AC,AD和BE交于点O,若以向量AB和BC为基底,向量AO可以表示为x向量AB+y向量BC(x,y属于R)的形式,则实数x和y的值分别为(?)A.1/4,1/2 B.1/2,1/4 C.1/5,2/5 D.2/5,1/5
人气:349 ℃ 时间:2019-08-18 20:14:06
解答
向量AO=AB+BO= AB+mBE (因为向量BO与BE共线,所以BO= mBE)
= AB+m(AE-AB)
= AB+m(1/4AC -AB)
= AB+m[1/4(AB+BC) –AB]
=(1-3m/4) AB+m /4 BC.
又因向量AO与AD共线,
所以向量AO=nAD
=n(AB+BD)
=n(AB+1/2BC)
= n AB+ n /2BC
综上有向量AO=(1-3m/4) AB+m /4 BC= n AB+ n /2BC
∴1-3m/4= n,m /4 =n /2,
解得m=4/5,n=2/5.
∴向量AO= n2/5AB+ 1 /2/5BC.
选D.
推荐
- 在三角形ABC中,AD/AB=1/3,AE/AC=1/4,BE与CD相交于点P,且向量AB=向量a,AC=向量b,用向量ab表示向量AP
- 过△ABC的重心任作一直线分别交AB,AC于点D,E.若AD=xAB,AE=yAC,xy≠0,则1/x+1/y的值为_.
- 已知向量AD,向量BE分别是三角形ABC得边BC,AC上的中线
- 在三角形ABC中,向量AD=1/4向量AB,DE‖BC,与边AC相交于点E,三角形ABC的中线AM与DE相交于点N,
- 三角形ABC中,向量AD=1/3向量AB,向量AE=1/4向量AC,连接CD,BE交于P.试用向量AB与向量AC表示向量AP
- 咏雪全文的朗读节奏划分
- The question who .它们是什么从句,怎样区分这样的从句?
- 已知二次不等式ax^2+bx+c>0的解集为{x|-1
猜你喜欢