在平面直角坐标系xoy中,已知圆x²+y²-8y+12=0的圆心为c,过点d(2,0)斜率为k的直线l与圆c相交于不同的两点A.B
①求K的取值范围
②设M(½,0),是否存在常数K,使得向量MA+MB与CD共线?若存在,求K的值,不存在,理由.
人气:251 ℃ 时间:2019-10-17 04:43:58
解答
由已知 x²+y²-8y+12=0,即x²+(y-4)²=4
圆心C(0, 4),半径r=2
因为D(2, 0)
数形结合可知,过D点垂直于x轴的直线,与圆C相切于(2, 4),暂且称其为E,另一切点为F
CE=r=2,DE=4
所以 tan所以 tan所以 DF的斜率为 -3/4
所以 k的取值范围是 k< -3/4
直线方程:y=k(x-2)
代入 x²+k²(x²-4x+4)-8k(x-2)+12=0
整理得 (k²+1)x²-4k(k+2)x+(4k²+16k+12)=0
MA向量=(Xa- 1/2, Ya), MB向量=(Xb- 1/2, Yb)
MA向量+MB向量=(Xa+Xb -1, Ya+Yb)
根据韦达定理,MA向量+MB向量=( 4k(k+2)/(k²+1),4k(2k-1)/(k²+1))
CD向量=(2, -4)
共线,那么 4k(k+2)/(k²+1) *(-2) = 4k(2k-1)/(k²+1)
解得 k= -3/4
此时,直线与圆相切,与已知“相交于不同的两点A.B”矛盾,所以k不存在我咋算的和你不一样第二问,我算出来是-1我找出我错哪儿了~~更正如下: 直线方程:y=k(x-2)代入 x²+k²(x²-4x+4)-8k(x-2)+12=0整理得 (k²+1)x²-4k(k+2)x+(4k²+16k+12)=0MA向量=(Xa- 1/2, Ya), MB向量=(Xb- 1/2, Yb)MA向量+MB向量=(Xa+Xb -1, Ya+Yb)根据韦达定理,MA向量+MB向量=( (3k²+8k-1)/(k²+1),4k(2k-1)/(k²+1))CD向量=(2, -4)共线,那么 (3k²+8k-1)/(k²+1) *(-2) = 4k(2k-1)/(k²+1)解得 k= -1 或者 k=1/7(舍去)
推荐
- 在平面直角坐标系xOy中,已知圆x2+y2-12x+32=0的圆心为Q,过点P(0,2)且斜率为k的直线l与圆Q相交于不同的两点A,B. (Ⅰ)求圆Q的面积; (Ⅱ)求k的取值范围; (Ⅲ)是否存在常数k,使
- 已知圆C:x2+y2-8y+12=0,直线l经过点D(-2,0),且斜率为k. (1)求以线段CD为直径的圆E的方程; (2)若直线l与圆C相离,求k的取值范围.
- 在平面直角坐标系xOy中,已知点A(-2,0),园C:X^2+y^2=1,过点A作斜率为K的直线L与圆C交于两个不同的点
- 已知圆心为C的圆C:x^2+y^2-8y+12,直线l经过D(-2,0),且斜率为k
- 在平面直角坐标系xOy中,已知圆x^2+y^2-12*x+32的圆心为Q,过点P(0,2)且斜率为k的直线与圆Q相交于不同的
- 大海中某小岛的周围10km内有暗礁,一艘海轮在该岛的南偏西55°方向的某处.
- 英语翻译
- 物理中水波是属于横波还是纵波
猜你喜欢
- 长方体棱长和为216厘米,它的长、宽、高之比为4比3比2,长方体的表面积是多少平凡厘米
- 用英语翻译:在一个岛上
- 一个初三动词时态填空.很简单的说
- 一直a>b>c>d,则(1/(a-b)+1/(b-c)+1/(c-d))*(a-d)的最小值
- (1)画圆O以及互相垂直的两条直径AB,CD;以点A为圆心,AO为半径画弧,交圆O于点E,F(点E在劣弧AC上);连接AE,AD,EF,EC,OE,OF;
- 三元一次函数在空间直角坐标系中怎么画?
- 尤其初2的数学和英语基础不是很扎实
- 一辆初速度为18km/h的汽车,以0.5m/s2加速度做匀加速直线运动,加速到10s时汽车的速度是多大?