∵f(x)在点x=0的某一邻域内具有二阶连续导数,即f(x),f'(x),f''(x)在x=0的某一邻域均连续
且:
| lim |
| x→0 |
| f(x) |
| x |
∴f(x)=f(0)=0
| lim |
| x→0 |
| f(x)−f(0) |
| x |
∴f’(0)=0
∴
| lim |
| x→0 |
| f(x) |
| x2 |
| lim |
| x→0 |
| f’(x) |
| 2x |
| lim |
| x→0 |
| f’(x)−f’(0) |
| 2x |
| 1 |
| 2 |
∴
| lim |
| n→∞ |
f(
| ||
(
|
∴由比值判别法可知原级数绝对收敛
| lim |
| x→0 |
| f(x) |
| x |
| ∞ |
![]() |
| n=1 |
| 1 |
| n |
| lim |
| x→0 |
| f(x) |
| x |
| lim |
| x→0 |
| f(x)−f(0) |
| x |
| lim |
| x→0 |
| f(x) |
| x2 |
| lim |
| x→0 |
| f’(x) |
| 2x |
| lim |
| x→0 |
| f’(x)−f’(0) |
| 2x |
| 1 |
| 2 |
| lim |
| n→∞ |
f(
| ||
(
|