∵f(x)在点x=0的某一邻域内具有二阶连续导数,即f(x),f'(x),f''(x)在x=0的某一邻域均连续
且:
lim |
x→0 |
f(x) |
x |
∴f(x)=f(0)=0
lim |
x→0 |
f(x)−f(0) |
x |
∴f’(0)=0
∴
lim |
x→0 |
f(x) |
x2 |
lim |
x→0 |
f’(x) |
2x |
lim |
x→0 |
f’(x)−f’(0) |
2x |
1 |
2 |
∴
lim |
n→∞ |
f(
| ||
(
|
∴由比值判别法可知原级数绝对收敛
lim |
x→0 |
f(x) |
x |
∞ |
n=1 |
1 |
n |
lim |
x→0 |
f(x) |
x |
lim |
x→0 |
f(x)−f(0) |
x |
lim |
x→0 |
f(x) |
x2 |
lim |
x→0 |
f’(x) |
2x |
lim |
x→0 |
f’(x)−f’(0) |
2x |
1 |
2 |
lim |
n→∞ |
f(
| ||
(
|