∵f(x)在点x=0的某一邻域内具有二阶连续导数,即f(x),f'(x),f''(x)在x=0的某一邻域均连续
且:
| lim | 
| x→0 | 
| f(x) | 
| x | 
∴f(x)=f(0)=0
| lim | 
| x→0 | 
| f(x)−f(0) | 
| x | 
∴f’(0)=0
∴
| lim | 
| x→0 | 
| f(x) | 
| x2 | 
| lim | 
| x→0 | 
| f’(x) | 
| 2x | 
| lim | 
| x→0 | 
| f’(x)−f’(0) | 
| 2x | 
| 1 | 
| 2 | 
∴
| lim | 
| n→∞ | 
| f( 
 | ||
| ( 
 | 
∴由比值判别法可知原级数绝对收敛
| lim | 
| x→0 | 
| f(x) | 
| x | 
| ∞ | 
|  | 
| n=1 | 
| 1 | 
| n | 
| lim | 
| x→0 | 
| f(x) | 
| x | 
| lim | 
| x→0 | 
| f(x)−f(0) | 
| x | 
| lim | 
| x→0 | 
| f(x) | 
| x2 | 
| lim | 
| x→0 | 
| f’(x) | 
| 2x | 
| lim | 
| x→0 | 
| f’(x)−f’(0) | 
| 2x | 
| 1 | 
| 2 | 
| lim | 
| n→∞ | 
| f( 
 | ||
| ( 
 |