> 数学 >
证明高一的换底公式
你是用了换底公式不是证明它
已经知道了:
已知 A^B=C,设 A=X^Y,C=X^Z 代入,
X^YB=X^Z ,所以 YB=Z,
又,B=LOG(A,C),Y=LOG(X,A),Z=LOG(X,C)

LOG(A,C) = LOG(X,C) / LOG(X,A)
人气:211 ℃ 时间:2020-06-16 12:46:39
解答
设logbN=X,bx=N
两边取以a为底的对数,得:xlogab=logaN
logaN
X= logbN =
logab
logbN = logbalogaN = logaN·logba
logbN
∴logaN =
logba
由N=blogbN的两边取以a为底的对数,得:logaN =logbN·logab
logaN
∴logbN =
logab
推荐
猜你喜欢
© 2025 79432.Com All Rights Reserved.
电脑版|手机版