> 数学 >
已知点P是等边三角形ABC内一点,角APB,角BPC,角CPA的比是5:6:7,求以AP,BP,CP为边的三角形内角的比
人气:443 ℃ 时间:2019-12-15 06:09:26
解答
三个内角的比为2:3:4.理由: 在AP的一侧以AP长为边作等边△APD,使D位于△ABC外AC边一侧, 易证△ABP≌△ACD(SAS), 因此,CD=PB,PD=PA,△APD就是以AP、BP、CP为边的三角形 设∠APB=5x,∠BPC=6x,∠APC=7x...
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版