设xn=1/1^2+1/2^2+...+1/n^2,证明数列{xn}有极限.
请大家知道一二
人气:327 ℃ 时间:2019-08-17 19:50:07
解答
xn=1/1^2+1/2^2+...+1/n^2
xn>x(n-1)递增
xn=1/1^2+1/2^2+...+1/n^2
推荐
- 0<X1<2,Xn+1=根号下2+Xn.证明数列Xn有极限,并求出该极限…
- 设x1=2,Xn+1=1/2(Xn+1/Xn)(n=1,2,…),证明数列{Xn}收敛,并求其极限.
- 设x1>0,Xn+1=1/2(Xn+1/Xn)(n=1,2,3.n),证明数列极限Xn n趋向无穷存在 并且求极限值.
- 已知数列Xn的极限为a,证明数列|Xn|的极限为|a
- 设X1=1,Xn=1+(Xn-1/(1+Xn-1)),n=1,2,…,试证明数列{Xn}收敛,并求其极限
- 已知点P1(4,-9)和P2(6,3)求以P1P2为直径的圆的方程,并求圆C上的动点M到原点O的距离的最大值、最小值
- (-24)乘(8分之1-3分之1+4分之1)+(-8)
- 果农常用保鲜袋包水果,这样做的目的之一是减少水分的____;雪熔化的天气有时比下雪时还冷,这是因为雪熔化是_____过程,需要_______.
猜你喜欢