设x1>0,Xn+1=1/2(Xn+1/Xn)(n=1,2,3.n),证明数列极限Xn n趋向无穷存在 并且求极限值.
人气:108 ℃ 时间:2019-10-09 10:47:59
解答
x(n+1)=1/2*(xn+1/xn)>=1/2*2=1xn=1时取等号
即xn是大于等于1的数
2(X(n+1)-Xn)=2X(n+1)-2Xn=Xn+1/Xn-2Xn
=(1-Xn^2)/Xn
推荐
- 设x1=2,Xn+1=1/2(Xn+1/Xn)(n=1,2,…),证明数列{Xn}收敛,并求其极限.
- 0<X1<2,Xn+1=根号下2+Xn.证明数列Xn有极限,并求出该极限…
- 设X1=1,Xn=1+(Xn-1/(1+Xn-1)),n=1,2,…,试证明数列{Xn}收敛,并求其极限
- 用极限准则证明数列x1=√3,xn+1=√(3+xn) (n=1,2,...)的极限存在
- 如何证明数列X1=2,Xn+1=1/2(Xn+1/Xn)的极限存在?说个思路也可以..
- he can inspire people with great confidence 的翻译
- 等底等高的圆柱和圆锥的体积相差16立方米,这个圆柱的体积是_立方米,圆锥的体积是_立方米.
- 有一个两位数,其中十位上的数字比个位上的数字小2,如果这个两位数大于20而小于40,求这个两位数.
猜你喜欢