∴x=1满足条件;
若a≠0,∵△=(a2+a+1)2-4a(a+1)
=(a2+a)2+2(a2+a)+1-4a(a+1)
=(a2+a)2-2a(a+1)+1=(a2+a-1)2≥0,
∴方程一定有两个实根.
故而当方程没有正根时,应有
|
∴至少有一正根时应满足a>-1且a≠0,
综上,方程有一正根的充要条件是a>-1.
方法二:若a=0,则方程变为-x+1=0,x=1满足条件,若a≠0,
则方程至少有一个正根等价于
a+1 |
a |
|
或
|
⇔-1<a<0或a>0.
综上:方程至少有一正根的充要条件是a>-1.