> 数学 >
证明:曲面F(nx-lz,ny-mz)在任意一点处的切平面都平行于直线(x-1)/l=(y-2)/m=(z-3)/n,其中F具有连续的偏导
人气:203 ℃ 时间:2020-06-29 06:34:15
解答
证明:F1表示F对F的第一个分量求导,F2表示F对F的第二个分量求导.
Fx=nF1,Fy=nF2,Fz=-lF1-mF2.
则F(nx-lz,ny-mz)在任意一点的法向量为(nF1,nF2,-lF1-mF2).
而直线的方向向量为(l,m,n)
两向量做内积得到nlF1+nmF2-nlF1-mnF2=0.
说明曲面上任意一点的法向量与直线垂直,因此有任意一点的切平面都平行于直线.
推荐
猜你喜欢
© 2025 79432.Com All Rights Reserved.
电脑版|手机版