若f(x)在(-∞,+∞)内连续,证明:1,若f(x)为奇函数,则∫(0,x)f(t)dt为偶函数;2,若f(x)为偶函数
,则∫(0,x)f(t)dt为奇函数
人气:131 ℃ 时间:2019-09-10 09:06:08
解答
令u=-t若f(x)为奇函数,∫(0,x)f(t)dt记作G1(x)G1(-x) = ∫(0,-x)f(t)dt= ∫(0,x)f(-u)d(-u)= ∫(0,x)f(u)d(u)= ∫(0,x)f(t)dt=G1(x)若f(x)为偶函数,∫(0,x)f(t)dt记作G2(x)G2(-x) = ∫(0,-x)f(t)dt= ...G2(-x) = ∫(0,-x)f(t)dt= ∫(0,x)f(-u)d(-u) 上面是 ∫(0,-x) 下面怎么就变成 ∫(0,x)了? 没看懂�� t= -u, ��t= 0ʱ��-u=0�� u=0��t = -xʱ��-u=-x�� u=x��u��x�仯��0�� ����-u�� -x�仯��0�� ����t�� -x�仯��0�����Դ�֮����t�ġң�0��-x�� �ͱ�ɶ�u�ġң�0��x������һ������ ��= �ң�0��x��f(-u)d(-u) һʽ= -�ң�0��x��f(u)d(u)��ʽһʽ�� ����ô �䵽2ʽ�� ��Ӧ���� -�ң�0��x��f(-u)d(u) Ϊʲô�� -�ң�0��x��f(u)d(u)∫(0,x)f(-u)d(-u)对d(-u)计算 d(-u) = -du= - ∫(0,x)f(-u)du偶函数f(-u) = f(u)=-∫(0,x)f(u)d(u)
推荐
- f(t)是连续的奇函数,证明∫(0,x)f(t)dt是偶函数, f(t)为连续的偶函数,证明∫(0,x)f(t)dt为奇函数?
- 若f(x)在(-∞,+∞)内连续,证明:1,若f(x)为奇函数,则∫(0,x)f(t)dt为偶函数;2,若f(x)为偶函数
- f(x)在[-l,l]上连续且Φ(x)=∫(0,x)f(t)dt , (-l≤x≤l),若f(x)为偶函数,证明Φ(x)在[-l,l]上为奇函数.
- 证明:若f(x)是奇函数,则f(t)dt在0到x上的定积分F(x)是偶函数
- 若f(t)为连续函数且为奇函数,证明:F(X)=∫f(t)dt(上限是X下限是0)是偶函数
- 电磁波中每一处的电场强度和磁感应强度总是相互垂直的,且与波的传播方向垂直. 用高中物理知识解释一下.
- 开始提问
- 他真希望这架飞机是他的用英语怎么说
猜你喜欢