1/x²+x+1/x²+3x+2+1/x²+5x+6+1/x²+7x+12,分式方程,
人气:245 ℃ 时间:2019-08-21 16:20:49
解答
原式=1/x(x+1)+1/(x+1)(x+2)+1/(x+2)(x+3)+1/(x+3)(x+4)
=1/x-1/(x+1)+1/(x+1)-1/(x+2)+1/(x+2)-1/(x+3)+1/(x+3)-1/(x+4)
=1/x-1/(x+4)
=4/(x²+4x)
推荐
猜你喜欢
- 已知A(0,3),B(-1,0),C(3,0),求D点的坐标,使四边形ABCD是直角梯形.(A,B,C,D按逆时针方向排列)
- 意外的反义词是什么?
- stuck on
- 解释一下括号里这些字词.
- Is it better to have different teachers every year,or have the same ones year by year.
- 计算1:lim(n→∞) {n^2[m/n-1/(n+1)-1/)n+2)-1/(n+3)-…-1/(m+n)]}
- 39/(5+x)=0.1方程
- 3.With the time _____,our happiness grew.A.goes by B.going by C.has gone by D.had gone by