已知数列{a(n)},a(1)=5,a(2)=2,a(n)=2a(n-1)+3a(n-2).(n>=3).其通项公式如何求?
a(n)=2S(n)^2/2S(n)-1如何变成1/S(n)-1/S(n-1)=2.(n>=2,n是正整数)?
人气:446 ℃ 时间:2019-10-11 02:44:42
解答
a[n]=2a[n-1]+3a[n-2]
a[n]+a[n-1]=3(a[n-1])+a[n-2])
a2+a1=7
即 a[n]+a[n-1]是首项为-3,公比为3的等比数列
所以 a[n]+a[n-1]=7*3^(n-1)
令n为n-1时,就有 a[n-1]+a[n-2]=7*3^(n-2)
两式相差得:
a[n]=a[n-2]+14*3^(n-3)
当n=2k时,
a[2]=2
a[4]=a[2]+14*3^(4-3)
...
a[2k]=a[2k-2]+14*3(2k-3)
各式两边相加后约去 a[2],a[4],.a[2k-2]
a[2k]=2+14*3^(1)+...+14*3(2k-3)
=2+14*3*(9^(k-1)-1)/8
=2+21/4*(9^(k-1)-1)
(k ∈ N)
同理,可以解得
a[2k+1]=5+7/4*(9^(k-1)-1)
(k ∈ N)
第二题:
a[n]=2S[n]^2/(2S[n]-1)
因为a[n]=S[n]-S[n-1]
即S[n]-S[n-1]=2S[n]^2/(2S[n]-1)
(S[n]-S[n-1])*(2S[n]-1)=2S[n]^2
展开化简就有:
S[n-1]-S[n]=2S[n-1]Sn
两边同除以 S[n-1]Sn 就是结果.
推荐
- 已知数列{an}中,a1=5,a2=2,an=2a(n-1)+3a(n-2)(n≥3)能否写出它的通项公式
- 已知数列{a [n]}满足a[1]=1 a[n]=a[1]+2a[2]+3a[3]+……+(n-1)a[n-1](n>=2)求{a [n]}的通项公式
- 已知数列an中,a1=5,a2=2,an=2a(n-1)+3a(n-2)(n>=3),求这个数列的通项公式
- 若数列{an}满足a1+2a2+3a3+…+nan=n(n+1)(n+2)(n∈N*),求{an}的通项公式.
- 已知数列{a n}中,a1=5,a2=2,an=2a(n-1)+ 3a(n-2)(n>=3)求通项公式
- 求一篇英语作文,最好是原创,the positive and negative impacts of tourism,300字左右~
- 童心向党——做一个有道德的人 这篇作文怎么写?
- 若(sina)^2+2(sinb)^2=2cosx 求(sina)^2+(sinb)^2的最大值和最小值?
猜你喜欢