四棱锥P-ABCD的底面是边长为a的菱形,平面PCD⊥平面ABCD,PC=a,PD=√2a,E为PA的中点,求证:平面EDB⊥平面ABCD
人气:412 ℃ 时间:2019-09-09 18:03:37
解答
证明:∵PC= a,CD=a,PD=√2a
由勾股定理得PC⊥CD
又 ∵平面 PCD⊥平面ABCD,PC∈平面PCD,且平面PCD平∩ 面ABCD=CD
∴PC⊥平面ABCD
连接BD,AC,交于点O,再连接OE
则OE ‖PC
又 ∵PC⊥平面ABCD
∴OE⊥平面ABCD
∵OE∈平面EDB
∴平面EDB⊥平面ABCD
推荐
- 如图,在底面是菱形的四棱锥P-ABCD中,∠ABC=60°,PA=AC=a,PB=PD=根号2a,点E是PD的中点
- 如图,在底面是菱形的四棱锥P-ABCD中,∠BAD=60°,PA=PD,E为PC的中点. (1)求证:PA∥平面EBD; (2)求证:△PBC是直角三角形.
- 已知四棱锥P-ABCD,底面是ABCD是角A为60°.边长为a的菱形,有PD垂直于底ABCD且PA=PD 点M,N为AD,PC的中点
- 已知四棱锥P-ABCD中,PD⊥平面ABCD,ABCD是正方形,E是PA的中点,求证:1)PC‖平面EBD 2)BC⊥平面PCD
- 已知四棱锥P-ABCD的底面是菱形.PB=PD,E为PA的中点. (Ⅰ)求证:PC∥平面BDE; (Ⅱ)求证:平面PAC⊥平面BDE.
- 卫星轨道的万有引力问题?
- 锌标准溶液标定EDTA溶液是滴加六亚甲基四胺的作用
- 一般将来时:we'll see you in the morning
猜你喜欢