
即(x-2)(x-m2-3)=0,
解得:x1=2,x2=m2+3,
∴一定有交点A(2,0),B(m2+3,0)
∴结论得证;
(2)∵A(2,0),B(m2+3,0)
∴d=AB=m2+1;
(3)①d=AB=m2+1=10,
∴y=x2-14x+24,
∴A(2,0),B(12,0)
以AB为直径画圆,由图可知与抛物线有两个交点,
∴存在这样的点P,
设点P坐标为(x,x2-14x+24),作P1Q⊥横轴于Q,则点Q(x,0),
易得△AQP∽△PQB,
∴
| AQ |
| QP |
| PQ |
| QB |
∴PQ2=AQ•BQ=(x-2)(12-x)=(x2-14x+24)2,
即(x-2)(12-x)=(x-2)2(x-12)2,(x-2)(x-12)≠0,
∴解得x=7±2
| 6 |
∴点P为(7+2
| 6 |
| 6 |
则b=-1;
②当△ABP是锐角三角形时,-25≤b<-1;当△ABP为钝角三角形时,b>-1且b≠0.
