已知抛物线y=x²-(m²+4)x-2m²+12
(1)证明:无论m为何实数,抛物线与x轴恒有两个交点,且一个交点为(-2,0)
(2)m为何值时,两个交点之间的距离为12?
(3)m为何值时,两个交点之间的距离最小?
人气:339 ℃ 时间:2020-04-14 00:47:46
解答
(1)由x²-(m²+4)x-2m²+12=0得x=-2或x=m²+4
因为m²+4不等于-2,
所以抛物线与x轴恒有两个交点,且一个交点为(-2,0)
2),两个交点之间的距离为m²+4-(-2)=m²+6=12,
m=√6或m=-√6
(3)两个交点之间的距离为m²+6,
所以m=0,两个交点之间的距离最小
推荐
- 已知:抛物线y=x2-(m2+5)x+2m2+6. (1)求证:不论m取何值,抛物线与x轴必有两个交点,并且有一个交点是A(2,0); (2)设抛物线与x轴的另一个交点为B,AB的长为d,求d与m之间的函数关
- 已知:抛物线y=x2-(m2+5)x+2m2+6. (1)求证:不论m取何值,抛物线与x轴必有两个交点,并且有一个交点是A(2,0); (2)设抛物线与x轴的另一个交点为B,AB的长为d,求d与m之间的函数关
- 已知抛物线y=x²-(m²+4)x-2m²-12,试求m为何实数值时,图象与x轴两个交点间距离最小?最小
- 已知抛物线y=x2+(2m+1)x+m+1,根据下列条件分别求m的值. (1)若抛物线过原点; (2)若抛物线的顶点在x轴上; (3)若抛物线的对称轴为x=1.
- 已知抛物线y=x²+2m+m²-1/2m-2/3(1)当m取任何实数时,此抛物线交点能否在直线y=1/2 x-3/2上?
- 3分之1,8分之3,5分之1,40分之7,15分之8,30分之11,50分之33,哪几个能化成有限小数?
- 能不能给我推荐一本比较好的美国idioms的书?
- 已知:如图,在四边形ABCD中,AB∥CD,∠B=∠D.求证:AD∥BC(用两种不同的方法证明)
猜你喜欢
- 世界降水的分布差异(4点)
- 代数找规律(初一水平)
- 再帮我一个忙吧.甲、乙两人一起生产零件2小时,共生产110个,如果分别能工作5小时,甲比乙多生产25个零件
- 甲的捐款是其余人一半,乙的捐款是其余人3分之1,丙是其余人4分之1,共捐款3960元,共4人,丁捐款几元
- 哪位大哥能给我讲下一元函数导数与微分的关系
- 比的基本性质与商不变的性质是一致的._.
- 用容量瓶配制溶液时,用量筒量取浓溶液时用不用待量取的溶液润洗量筒?
- 某工作场所有220V,200W的白炽灯20盏,220V100W的白炽灯30盏,全部开启2小时,求用电多少度?