> 数学 >
设f(x)在[0,π]上连续,(0,π)内可导,证明存在ξ∈(0,π),使得f'(ξ)sinξ+2f(ξ)cosξ=0
人气:315 ℃ 时间:2020-06-03 17:06:53
解答
F(x)=f(x)(sinx)^2;F'(x)=f'(x)(sinx)^2+f(x)(2sinxcosx);由条件易知,F(x)在[0,π]上连续,(0,π)上可导,于是:存在ξ∈(0,π),使得f'(ξ)sinξsinξ+2f(ξ)cosξsinξ=0;sinξ不为零,则:存在ξ∈(0,π),使得f'(ξ...
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版