如图,抛物线y=ax2+bx+c经过A(-1,0)B(3,0)C(0,3)三点,对称轴与抛物线交于点P,与直线BC相交于点M,连接PB.
1.求该抛物线的解析式
2.抛物线上是否存在一点Q,使△QMB与△PMB的面积相等,若存在,求点Q的坐标;若不存在,说明理由.
3.在第一象限,对称轴右侧的抛物线上是否存在一点R,使△RPM与△RMB的面积相等,若存在,直接写出点R的坐标.
图片在我的百度空间里,A的那一张
人气:406 ℃ 时间:2020-01-27 22:47:51
解答
将A,B,C三点,分别代入抛物线方程,得:0=a-b+c0=9a+3b+c3=c所以得出:a=-1,b=2,c=3∴抛物线解析式为y=-x²+2x+32.存在,Q有3个坐标设Q到直线MB的距离为m,P到直线MB的距离为n∵S△QMB=(1/2)×|MB|×m,S△PMB=(1/2)...
推荐
- 如图,抛物线y=ax2+bx+c经过A(-1,0)B(3,0)C(0,3)三点,对称轴与抛物线交于点P,与直线BC相交于点M,连接PB.
- 如图,二次函数y=ax2+bx+c的图象开口向上,对称轴为直线x=1,图象经过(3,0),则a-b+c的值是_.
- 如图,对称轴为直线x=-1的抛物线y=ax²+bx+c(a≠0)与x轴相交于A,B两点,其中点A的坐标为(-3,0)
- 如图,对称轴为直线x=-1的抛物线y=ax2+bx+c(a≠0)与x轴相交于A,B两点,去当△acd的
- 如图,已知抛物线y=ax2+bx-3与x轴交于A、B两点,与y轴交于C点,且经过点(2,-3a),对称轴是直线X=1,
- 证明:在(-l,l)上任意函数可写成一个奇函数与一个偶函数的和
- 一空心铁球悬浮于水中,求空心部分与实心部分的质量比
- 将一个长是15cm宽12cm高10cm的长方体截成一个体积最大的正方体,这个正方体的体积
猜你喜欢