根据题意得t2-(k+2)t+12=0①,2t2-(3k+1)t+30=0②,
①×2-②得(k-3)t=6,
当k-3≠0时,t=
6 |
k−3 |
把t=
6 |
k−3 |
6 |
k−3 |
6 |
k−3 |
整理得k2-11k+30=0,解得k1=5,k2=6,
当k=5时,t=3;当k=6时,t=2,
即当k为5时,方程x2-(k+2)x+12=0和方程2x2-(3k+1)x+30=0有一公共根3;当k为6时,方程x2-(k+2)x+12=0和方程2x2-(3k+1)x+30=0有一公共根2.
6 |
k−3 |
6 |
k−3 |
6 |
k−3 |
6 |
k−3 |