已知抛物线y^2=4x,直线l的斜率为1,且过抛物线的焦点 (1)求直线l的方程 (2)直线l与抛物线交于两点
A,B,O是坐标原点,求△AOB的面积
人气:125 ℃ 时间:2019-11-08 14:12:35
解答
(1)、∵抛物线方程为:y²=4x
∴焦点坐标为(1,0)
又∵直线l的斜率为1,且过抛物线的焦点
∴直线方程为:y-0=x-1
即x-y-1=0
(2)、直线l与抛物线交于A、B两点
∴将直线方程和抛物线方程联立可得:
y²=y+1,即y²-y-1=0
根据韦达定理:yA+yB=1,yAyB=-1
则xA+xB=yA+1+yB+1=3,
xAxB=(yA+1)(yB+1)=yAyB+yA+yB+1=1
∴(yA-yB)²=(yA+yB)²-4yAyB=5
(xA-xB)²=(xA+xB)²-4xAxB=5
即△AOB的底为:|AB|=√[(xA-xB)²+(yA-yB)²]=5√2
又∵点O到直线AB的距离即为△AOB的高
即h=|0-0-1|/√2=√2/2
则△AOB的面积为:S=1/2*|AB|*h=5/2
推荐
- 已知抛物线y^2=4x,直线L的斜率为1,且过抛物线的焦点,求直线L的方程
- 经过抛物线y^2=4x的焦点F的直线L与该抛物线交于A,B两点,若线段AB的斜率为K,中点M的轨迹方程是?
- 过抛物线y^2=4x的焦点且斜率为2的直线l交抛物线于A,B两点求l的方程.求/AB/
- 斜率是1的直线经过抛物线y2=4x的焦点,与抛物线相交于A、B两点,则线段AB的长是( ) A.2 B.4 C.42 D.8
- 过抛物线y²=4x的焦点且斜率=2的直线K交抛物线A,B两点,求L的方程及线段AB的长
- 整数集与有理数集,自然数的区别?
- 若n是正整数,有理数x、y满足x+1y=0,则一定成立的是( ) A.x2n+1+(1y)n=0 B.x2n+1+(1y)2n+1=0 C.x2n+(1y)2n=0 D.xn+(1y)2n=0
- 将50g/L葡萄糖和9.0g/L Nacl溶液等体积混合,该混合液是临床上的等渗溶液吗?37摄氏度时,其渗透压为什么?
猜你喜欢