已知抛物线y=X2-(k-1)x-k-1与x轴的交点为A和B,顶点为C,求三角形ABC的面积的最小值.
人气:247 ℃ 时间:2019-08-20 18:59:33
解答
设A(x1,0) B(x2,0),则满足x1+x2=k-1,x1x2=-k-1故|x1-x2|=√[(k-1)^2+4(k+1)]=√(k^2+2k+5)由于y=X2-(k-1)x-k-1=[x-(k-1)/2]^2-(k^2+2k+5)/4故顶点的纵坐标为-(k^2+2k+5)/4,令t=k^2+2k+5,三角形ABC的面积为1/2 ...
推荐
- 已知抛物线y=x2-(k-1)x-k-1与x轴交于A,B两点,顶点C,那么三角形ABC的面积最小值为_(要详细过程)
- 抛物线y=x^2-(k-1)x-k-1与x轴交点为A,B,顶点为C,求三角形ABC的最小面积是多少?
- 如果抛物线y=x2-(k-1)x-k-1与x轴的焦点为A、B,顶点为C,那么△ABC面积的最小值是
- 已知抛物线y=-x^2=4交x轴于A.B两点;顶点是C. 求三角形ABC的面积
- 抛物线y=x2-4与x轴交于B、C两点,顶点为A,则△ABC面积为_.
- 黄色的花淡雅,白色的花高洁,紫红色的花热烈而深沉,泼泼洒洒,秋风中正开的烂漫
- 立方晶系中为什么不存在底心立方晶胞?
- 解方程:x²-8x=9
猜你喜欢