设e1,e2分别是具有公共交点F1,F2的椭圆和双曲线的离心率,P是一个公共点,且线段PF1和PF2垂直
求(e1^2+e2^2)/(e1e2)^2的值。(^2是平方)
人气:269 ℃ 时间:2019-09-16 15:39:23
解答
很简单,只要将题目的条件都转化为代数式然后进化化简即得结果
设椭圆的长半轴是a1,双曲线的实半轴是a2,它们的半焦距是c
并设PF1=m,PF2=n,m>n,根据椭圆的和双曲线的定义可得
m+n=2a1
m-n=2a2
解得
m=a1+a2,n=a1-a2
又PF1⊥PF2,由勾股定理得
PF1²+PF2²=F1F2²
(a1+a2)²+(a1-a2)²=(2c)²
化简可得
a1²+a2²=2c²
离心率e1=c/a1,e2=c/a2
(e1²+e2²)/(e1e2)²
=[(c/a1)²+(c/a2)²]/[(c/a1)(c/a2)]²
=[(c²/a1²)+(c²/a2)²]/[c²/(a1a2)]²
=[c²(a1²+a2²)/(a1a2)²]/[c⁴/(a1a2)²]
=c²×2c²/c⁴
=2
推荐
- 设e1,e2分别为公共焦点F1与F2的椭圆和双曲线的离心率,p为两曲线的一个公共点,且满足向量PF1*PF2=0,则(1/e12)+(1/e22)的值是多少?
- 设e1、e2分别是具有公共焦点F与F2的椭圆与双曲线的离心率,P为两曲线的一个公共点,且满足PF1 PF2=0,则4e1方+e2方的最小值为
- F1.F2是定点P是以F1.F2为公共焦点的椭圆和双曲线交点,F1垂直F2,e1.e2是椭圆.双曲线离心率
- 已知F1 F2是两个定点,点P是以F1 F2为公共焦点的椭圆和双曲线的一个交点,并且PF1垂直PF2,e1和e2分别是
- 离心率为e1的椭圆与离心率为e2的双曲线有相同的焦点,且椭圆长轴的端点,短轴的端点,焦点到双曲线的一条渐近线的距离依次构成等比数列,则(e1^2-1)/(e2^2-1)=
- 满载而归的意思是什么
- fell soon you better will连词成句
- 嘎石灯是什么?也叫电石灯,嘎石是什么?主要成分,加水后生成什么?化学方程式是什么?
猜你喜欢