设e1,e2分别为公共焦点F1与F2的椭圆和双曲线的离心率,p为两曲线的一个公共点,且满足向量PF1*PF2=0,则(1/e12)+(1/e22)的值是多少?
人气:211 ℃ 时间:2019-08-20 06:20:29
解答
设椭圆的长轴长为2a1,双曲线的实轴长为2a2焦距均为2c∵P为两曲线的一个公共点,不妨设P在第一象限∴|PF1|+|PF2|=2a1 ①|PF1|-|PF2|=2a2 ②∴①²+②²2(|PF1|²+|PF2|²)=4(a²1+a²2)∴|PF1...
推荐
- F1.F2是定点P是以F1.F2为公共焦点的椭圆和双曲线交点,F1垂直F2,e1.e2是椭圆.双曲线离心率
- 已知F1 F2是两个定点,点P是以F1 F2为公共焦点的椭圆和双曲线的一个交点,并且PF1垂直PF2,e1和e2分别是
- 设e1、e2分别是具有公共焦点F与F2的椭圆与双曲线的离心率,P为两曲线的一个公共点,且满足PF1 PF2=0,则4e1方+e2方的最小值为
- 设F1 F2为双曲线x2-4y2=4a(a>0)的两个焦点,点P在双曲线上,且满足PF1*PF2=0,向量PF1 的绝对值*向量PF2的绝对值=2,则a的值为?
- 设F1、F2分别是椭圆x^2/16+y^2/7=1的左右焦点,若点P在椭圆上,且向量PF1点乘向量PF2=0,则向量PF1+PF2
- 翻译成英语:这是我的日记本
- 驱逐的读音zhuo还是zhu
- 我和什么的故事?急 就是不知道什么题材 讲小学难忘的事情,有没有什么题材?
猜你喜欢