已知等差数列an首项a1>0,公差d>0,设Tn=1/a1a2+1/a2a3+...+1/anan+1,则limTn=?
人气:355 ℃ 时间:2020-04-23 19:18:06
解答
下标都写在[]里
1/(a[n]a[n+1])=(1/a[n]-1/a[n+1])/d
所以Tn=[1/a[1]-1/a[n+1]]/d
因为a[n+1]是无界的
所以limTn=1/a1d
推荐
- 设{an}是等差数列,且首项a1>0,公差d>0求证:1/a1a2+1/a2a3+…+1/anan+1=n/a1(a1+nd)
- 已知等差数列公差为d,1/a1a2+1/a2a3+…+1/anan+1可化简为
- 等差数列{1\an}满足a1=1,公差d=2,求a1a2+a2a3+……+anan+1的和
- {an}为等差数列,an不等于0,d为公差,求证:1/(a1a2)+1/(a2a3)+...+1/(an-1*an)=(n-1)/(aian)
- an是首项为3,公差,公差为2的等差数列,则lim(1/a1a2+1/a2a3+……+1/a(n-1)an)=
- 高一物理(共点力的平衡)②
- would like,could like
- 某人尿液中有血细胞与蛋白质 .是肾小球出了问题还是肾小球
猜你喜欢