已知等差数列公差为d,1/a1a2+1/a2a3+…+1/anan+1可化简为
已知等差数列公差为d,且a1≠0,d≠0,则1/a1a2+1/a2a3+…+1/anan+1可化简为 n/a1(a1+nd)求详细步骤
人气:233 ℃ 时间:2020-01-29 21:00:04
解答
因为1/anan+1=1/an*(an+d)=1/d[1/an-1/(an+d)]=1/d[1/an-1/an+1]
所以1/a1a2+1/a2a3+…+1/anan+1
=1/d[1/a1-1/a2+1/a3-1/a4.1/an-1/an+1]
=1/d(1/a1-1/an+1)
=1/d*(an+1-a1)/a1an+1
=n/a1(a1+nd)
推荐
- 设{an}是等差数列,且首项a1>0,公差d>0求证:1/a1a2+1/a2a3+…+1/anan+1=n/a1(a1+nd)
- 已知等差数列an首项a1>0,公差d>0,设Tn=1/a1a2+1/a2a3+...+1/anan+1,则limTn=?
- 等差数列{1\an}满足a1=1,公差d=2,求a1a2+a2a3+……+anan+1的和
- an是首项为3,公差,公差为2的等差数列,则lim(1/a1a2+1/a2a3+……+1/a(n-1)an)=
- 等差数列公差为d,1/a1a2+1/a2a3+.1/anan+1=?
- 概括十九世纪末资本主义国家的发展状况
- I had butterflies in my stomach 用词典直
- 九月九日都督大宴滕王阁 是什么文言文题目
猜你喜欢