设Φ(u,v)具有连续偏导数,证明由方程Φ(cx-az,cy-bz)=0所确定的函数z=f(x,y)满足a(эz/эx)+b(эz/эy)=c
你说的方法好象行不通啊,到最后那эz/эx到底=什么呢,能帮我写下过程吗.我只知道另外一种方法,那就是两边微分,但最后算的很麻烦.可你的方法好象比我的要简单些,能帮我写下过程吗.下面是我的做法
先两边微分,的 0=Φ`d(cx-az)+Φ`d(cy-bz)=cΦ`dx+cΦ`dy-(aΦ`+bΦ`)dz 得:dz=cΦ`dx+cΦ`dy/aΦ`+bΦ` 3z/3x=cΦ`/aΦ`+bΦ` 3z/3y=cΦ`/aΦ`+bΦ`
人气:279 ℃ 时间:2020-01-30 01:19:31
解答
cx-az看成u,cy-bz看成v,对Φ(u,v)=0分别对x,y求偏导,自然得到结果,你要是不会对隐函数求导或者不会对函数求偏导,就要去看书补充基础知识,只满足于得到具体某一题的答案对你没有好处 抽象函数你怕什么,该怎么导还是怎...
推荐
- 设Φ(u,v)具有连续偏导数,证明由方程Φ(cx-az,cy-bz)=0所确定的函数z=f(x,y)满足a(эz/эx)+b(эz/эy)=c
- 设ψ(cx-az,cy-bz)=0,其中ψ(u,v)具有连续偏导数,求a*(α^2z/αxαy)+b*(αz/αy)
- 设z=z(x,y)是由方程f(x-az,y-bz)=0所定义的隐函数,其中f(u,v)可微,求对y和对x的偏导数
- 设Φ(u,v)有连续偏导数,证明由方程Φ(cx-az,cy-bz)=0所确定的函数z=f(x,y)满足a(∂z/∂x)+b(∂z/∂y)=c
- 高数 设函数Z=Z(x,y)由方程D(cx-az,cy-bz)=0所确定.
- 高等数学能解决高中数学题问题吗
- 解方程:x的平方+25=y的平方
- 经纬图什么叫坐标
猜你喜欢
- 没有比较合适的参照物时怎么判断车子停正了
- 有一项工程,甲队单独做需要30天完成,乙队单独做需要20天完成.
- 语法分析,是什么从句之类的
- 已知线段AB=acm,点A1平分AB,A2平分A A1,A3平分A A2,...,An平分A AN-1,则A An=多少cm?
- 隐函数求导 x+y-e^xy=0
- 0.02减3x等于3.02方程
- 并联电路,某支路用电器短路,则这个用电器两端电压为多少
- Volunteers are ready to help you fix things like ____(break) bikes.