|
解得,a=5,b=0.
∴f(x)=
5x |
1+x2 |
(2)证明:任取x1、x2∈(-1,1),且x1<x2,则
f(x1)-f(x2)=
5x1 | ||
1+
|
5x2 | ||
1+
|
5(x1-x2)(1-x1x2) | ||||
(1+
|
∵-1<x1<x2<1,
∴(1+
x | 21 |
x | 22 |
∴f(x1)-f(x2)<0
∴f(x)在(-1,1)上是增函数.
(3)∵f(t-1)+f(t)<0,
∴f(t-1)<-f(t),
即f(t-1)<f(-t),
则
|
解得,0<t<
1 |
2 |
ax+b |
1+x2 |
1 |
2 |
|
5x |
1+x2 |
5x1 | ||
1+
|
5x2 | ||
1+
|
5(x1-x2)(1-x1x2) | ||||
(1+
|
x | 21 |
x | 22 |
|
1 |
2 |