∵1+sinα+cosα≠0,
∴左端
| 1+sinα+cosα+2sinαcosα |
| 1+sinα+cosα |
=
| sinα+cosα+(sinα+cosα)2 |
| 1+sinα+cosα |
=
| (sinα+cosα)(1+sinα+cosα) |
| 1+sinα+cosα |
=sinα+cosα=右端.
∴
| 1+sinα+cosα+2sinαcosα |
| 1+sinα+cosα |
| 1+sinα+cosα+2sinαcosα |
| 1+sinα+cosα |
| 1+sinα+cosα+2sinαcosα |
| 1+sinα+cosα |
| sinα+cosα+(sinα+cosα)2 |
| 1+sinα+cosα |
| (sinα+cosα)(1+sinα+cosα) |
| 1+sinα+cosα |
| 1+sinα+cosα+2sinαcosα |
| 1+sinα+cosα |