过抛物线y∧2=2px(p>0)的焦点F的直线与抛物线相交于P,Q两点,线段PQ的中垂线交抛物线对称轴于R,求‖PQ‖=2‖FR‖
人气:107 ℃ 时间:2019-11-04 23:12:17
解答
设P点坐标(x1,y1)Q(x2,y2)
由抛物线且PQ过焦点F得‖PQ‖=‖PF‖+‖QF‖=x1+p/2+x2+p/2=x1+x2+p
PQ的斜率为k=(y2-y1)/(x2-x1)=(y2-y1)/[(y2^2-y1^2)/2p]=2p/(y1+y2)
∴PQ中垂线斜率为-1/k=-(y1+y2)/2p
PQ中垂线方程为y-(y1+y2)/2=-(y1+y2)/2p[x-(x1+x2)/2]
交对称轴x轴的交点坐标R为 令y=0 解得x=(x1+x2)/2+p
‖FR‖=(x1+x2)/2+p-p/2=(x1+x2+p)/2
故‖PQ‖=2‖FR‖
推荐
- PQ为过抛物线焦点F的弦,作PQ的垂直平分线交抛物线对称轴于R点,求证|FR|=1/2|PQ
- 过抛物线y2=4x的焦点,作直线与抛物线相交于P、Q两点,求线段PQ中点的轨迹方程.
- 过抛物线焦点F的直线交抛物线于P,Q两点,弦PQ的垂直平分线交抛物线的对称轴于R,求证:丨FR丨=1/2丨PQ丨
- 过抛物线焦点F作不垂直于对称轴的直线交抛物线于A和B两点线段AB的垂直平分线交抛物线的对称轴于N,求证[AB
- 抛物线y^2=2px的准线与对称轴交于s,pQ为过抛物线的焦点F且与对称轴垂直的弦,则角PSQ的大小
- 植物体内被固定的二氧化碳通过----(生理过程)被释放出来,同时还形成了-----
- 甲乙丙三人分一筐橘子,甲分得的重量是乙的2分之1,丙分得的重量是乙的2倍,
- They have( )art festival( )each year.
猜你喜欢