> 数学 >
已知:如图,在四边形ABCD中,E,F分别是AB,CD的中点,且EF=
1
2
(AD+BC).求证:AD∥BC.
人气:214 ℃ 时间:2019-08-19 13:25:07
解答
证明:取BD的中点H,连接EH、FH,
∵E,F分别是AB,CD的中点,
∴EH是△ABD的中位线,FH是△BCD的中位线,
∴EH=
1
2
AD,EH∥AD,FH=
1
2
BC,FH∥BC,
∴EF+FH=
1
2
(AD+BC),
∵EF=
1
2
(AD+BC),
∴EH+FH=EF,
∴E、F、H三点共线,
∴AD∥EF∥BC,
故AD∥BC.
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版