用定义证明函数f(x)=x^3-4在R上为单调递增函数
人气:312 ℃ 时间:2019-09-20 20:36:22
解答
f(x)=x^3-4
设x1、x2∈R,x1>x2,
则f(x1)=x1³-4,f(x2)=x2³-4,
=> f(x1)-f(x2)=x1³-x2³=(x1-x2)(x1²+x1x2+x2²)=(x1-x2)[(x1+x2/2)²+3x2²/4]
x1>x2,=>x1-x2>0;
x1²+x1x2+x2²=[(x1+x2/2)²+3x2²/4]>0恒成立;
=> f(x1)-f(x2)>0
=> f(x1)>f(x2)
=> 函数f(x)=x^3-4在R上为单调递增函数
推荐
猜你喜欢
- 一项工程独做,甲队要十天完成,乙队要15天完成,甲乙两队的工作效率比是多少?
- 求括号的数 2,2,1,0.25 ,()
- 英语翻译
- 已知甲,乙,丙,三个数的和是36甲数比乙数的2倍大1,乙数的½恰好等于丙,则甲乙丙三个数分别为
- 大雪纷纷扬扬地下了起来.改成比喻句谢谢!
- 负数集是什么意思
- (理)与A(-1,2,3),B(0,0,5)两点距离相等的点P(x,y,z)的坐标满足的条件为_.
- 英语翻译