∴2b2=a2+c2,
利用正弦定理化简得:2sin2B=sin2A+sin2C,
化简得:1-cos2B=
1−cos2A |
2 |
1−cos2C |
2 |
即2cos(A+C)cos(A-C)=0,
∴cos(A-C)=0,即A-C=-
π |
2 |
∴C=A+
π |
2 |
∴A=π-B-C=
3π |
4 |
π |
2 |
π |
8 |
∴tan2A=
2tanA |
1−tan2A |
π |
4 |
整理得:tanA=
2 |
2 |
则tanA=
2 |
故答案为:
2 |
π |
4 |
π |
2 |
1−cos2A |
2 |
1−cos2C |
2 |
π |
2 |
π |
2 |
3π |
4 |
π |
2 |
π |
8 |
2tanA |
1−tan2A |
π |
4 |
2 |
2 |
2 |
2 |