∴2b2=a2+c2,
利用正弦定理化简得:2sin2B=sin2A+sin2C,
化简得:1-cos2B=
| 1−cos2A |
| 2 |
| 1−cos2C |
| 2 |
即2cos(A+C)cos(A-C)=0,
∴cos(A-C)=0,即A-C=-
| π |
| 2 |
∴C=A+
| π |
| 2 |
∴A=π-B-C=
| 3π |
| 4 |
| π |
| 2 |
| π |
| 8 |
∴tan2A=
| 2tanA |
| 1−tan2A |
| π |
| 4 |
整理得:tanA=
| 2 |
| 2 |
则tanA=
| 2 |
故答案为:
| 2 |
| π |
| 4 |
| π |
| 2 |
| 1−cos2A |
| 2 |
| 1−cos2C |
| 2 |
| π |
| 2 |
| π |
| 2 |
| 3π |
| 4 |
| π |
| 2 |
| π |
| 8 |
| 2tanA |
| 1−tan2A |
| π |
| 4 |
| 2 |
| 2 |
| 2 |
| 2 |