数列an的前n项和为Sn,已知a1=1,an+1=(n+2)/nSn.求证:(1)数列{Sn/n}是等比数列(2)Sn+1=4an
人气:437 ℃ 时间:2019-12-13 04:27:05
解答
(1)an+1=(n+2)/nSn,即S(n+1)-Sn=(n+2)/nSn,化简可得S(n+1)/(n+1)=2(Sn/n),即证得数列{Sn/n}是等比数列;
(2)由(1)可知Sn=n*2^(n-1),可求出an=(n+1)*2^(n-2),即可证得S(n+1)=4an.
推荐
- 数列{an}的前n项和记为Sn,已知a1=1,a(n+1)=n+2/nSn(n=1,2,3.),证明(1)数列{Sn/n}是等比数列.(2)S(n+1)=4an
- an的前n项和Sn,a1=1,an+1=(n+2)/nSn,证数列Sn/n是等比数列和Sn+1=4an
- 数列{an}的前n项和记为Sn,已知a1=1,an+1=n+2/nSn(n=1,2,3,…).证明: (Ⅰ)数列{Snn}是等比数列; (Ⅱ)Sn+1=4an.
- 数列{an}的前n项和记为Sn已知a1=1,an+1=n+2/n*Sn(n=1,2,3,…).求证:(1)数列{Sn/n}是等比数列
- 在数列{an}中,a1=2,an+1=4an-3n+1,n∈N* (1)证明数列{an-n}为等比数列 (2)求数列{an}的前n项和Sn.
- 请问下交通信用卡受限制是什么意思
- 求下两列数字的平均数和众数:90 85 76 85 88 85 79 87 85 86 和91 78 79 91 75 83 91 82 80 83
- I have never heard of the story.改为一般疑问句
猜你喜欢