1 |
x |
2a2x2−ax−1 |
x |
(2ax+1)(ax−1) |
x |
①当a=0时,f(x)=lnx,在(0,+∞)上单调递增,函数无极值;
②当a>0,令f′(x)=0,得x1=−
1 |
2a |
1 |
a |
1 |
a |
1 |
a |
当x=
1 |
a |
1 |
a |
1 |
a |
③当a<0,令f′(x)=0,得x1=−
1 |
2a |
1 |
a |
1 |
2a |
1 |
2a |
1 |
2a |
1 |
2a |
1 |
2a |
3 |
4 |
(2)由(1)知当a>0,时f(x)在(
1 |
a |
1 |
a |
1 |
2a |
1 |
2a |
1 |
2 |
综上得:a的取值范围为[−
1 |
2 |
1 |
x |
2a2x2−ax−1 |
x |
(2ax+1)(ax−1) |
x |
1 |
2a |
1 |
a |
1 |
a |
1 |
a |
1 |
a |
1 |
a |
1 |
a |
1 |
2a |
1 |
a |
1 |
2a |
1 |
2a |
1 |
2a |
1 |
2a |
1 |
2a |
3 |
4 |
1 |
a |
1 |
a |
1 |
2a |
1 |
2a |
1 |
2 |
1 |
2 |