因而以P、B、Q为顶点的三角形面积为s=
1 |
2 |
即s=-t2+15t-50(5<t<10);
(2)以B为原点建立平面直角坐标系,使BC落在x轴正半轴,BA落在y轴正半轴上.
∵D(20,10)在直线BD上,∴直线BD的解析式为y=
1 |
2 |
∵两直线互相垂直时,一次项系数一定互为负倒数,
∴直线PQ的一次项系数是-2,
设直线PQ的解析式为y=-2x+b.
分两种情况:①当点P在AB上,点Q在BC上时,
BP=10-t,BQ=2t-10,
∴P(0,10-t),Q(2t-10,0).
把点P、Q的坐标分别代入y=-2x+b,得10-t=b,0=-2(2t-10)+b,
解得t=6,b=4;
②点P在BC上,点Q在AD上时,
BP=t-10,AQ=60-2t,
∴P(t-10,0),Q(60-2t,10).
把点P、Q的坐标分别代入y=-2x+b,得0=-2(t-10)+b,10=-2(60-2t)+b,
解得t=25,b=30.
综上所述,t=6或t=25.