已知函数f(x)=sin(1/2x+π/4),求函数在[ -2π,2π ]的单调增区间
人气:165 ℃ 时间:2020-04-14 11:17:48
解答
设m=1/2x+π/4
则函数y=sinm的单调递增区间为[-π/2+2kπ,π/2+2kπ]其中k∈Z
将m=1/2x+π/4代入得:
-π/2+2kπ<1/2x+π/4<π/2+2kπ
化简得-3/2π+4kπ<x<π/2+4kπ 其中k∈Z
∵x∈[-2π,2π],∴k=0.
∴-3/2π<x<π/2
即f(x)在[-2π,2π]的单调增区间为[-3/2π,π/2].
推荐
猜你喜欢
- M=N=x=1 rcosA,y=-1 rsinA,
- 1x1-2x2+3x3-4x4******+99x99-100x100+101x101的过程
- 若a,b∈R,且a+b>1,ab>1,则a>1,b>1是真命题或假命题
- 甲、乙两件服装的成本共500元,商店老板为获取利润,决定将甲服装按50%的利润定价,乙服装按40%的利润定价.在实际出售时,应顾客要求,两件服装均按9折出售,这样商店共获利157元,求
- 甲乙两个书柜一共有400本书 ,从甲书柜中拿出50本,从乙书柜中拿出10那么两个书柜中的书相同 ,问甲乙书柜原来有多少本书?
- 英语翻译
- 谁知道:氢气在水中的溶解性?
- 3+2-5*0=?等于多少