> 数学 >
点到直线距离公式证明方法
人气:399 ℃ 时间:2020-04-07 18:41:02
解答
设点A(m.n)到直线y=kx+b的距离
首先,求过点A且与直线y=kx+b垂直的直线方程
过点A且与直线y=kx+b垂直的直线方程设为y=-x/k+c
【因为两直线垂直,其斜率乘积为-1,即k1k2=-1】
所以有n=-m/k+b===>b=n+m/k=(nk+m)/k
所以过A点且垂直y=kx+b的直线方程为
y=-x/k+(nk+m)/k
其次,求这两条直线的交点坐标,即联解这两个直线方程
直线y=kx+b与直线y=-x/k+(nk+m)/k的交点坐标
kx+b=-x/k+(nk+m)/k
解出x,然后解出y即是交点坐标,假设为B点(p,q)
最后,根据两点距离公式求出点A到y=kx+b的距离
|AB|=√[(m-p)²+(n-q)²]
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版