在平行四边形ABCD中,点E、F分别在AB、CD上,且BE=DF,直线EF分别与AD、CB的延长线相交于点M、N.试猜想AC
AC、MN的关系,并说明理由.
人气:462 ℃ 时间:2019-11-21 18:11:00
解答
ABCD是平行四边形,所以∠ADC=∠CBA
∠FDM=180-∠ADC,∠EBN=180-∠CBA
所以∠FDM=∠EBN
AD∥BC,∠DMF=∠BNE
BE=DF
所以△FDM≌△EBN,DM=BN
因为AD=BC,所以AD+DM=BC+BN
即AM=CN
又有AM∥CN,所以四边形AMCN是平行四边形
因此AC、MN互相平分
推荐
- 在平行四边形ABCD中,点E.F分别在AB.CD上,且BE=DF,直线EF分别与AD.CB的延长线相交于M.N,试猜想AC与MN的特殊
- 已知:如图,在平行四边形ABCD中,点E,F分别是AB,CD上,且BE=DF,直线EF分别与AD,CB的延长线相交于点M,N.
- 如图,在平行四边形ABCD中,过对角线的交点O直线交CB,AD的延长线于E和F.求证:BE=DF
- 已知,如图,在平行四边形ABCD中,过AC的中点O的直线分别交CB,AD的延长线于点E,F.求证:BE=DF
- 四边形ABCD是平行四边形,直线EF∥BD,并且与CD、CB的延长线分别交于E、F,交AB、AD于N、M,求证:EN=FM.
- AB两地相距120km,甲从A地出发去B地,同时乙从B地出发去A地,2h后两人在途中相遇,相遇后,甲乙继续前进,当甲
- 蔺相如,廉颇的人物特点
- 【选修4-4 不等式证明】设a、b、c均为正实数,求证:1/2a+1/2b+1/2c≥1/b+c+1/c+a+1/a+b.
猜你喜欢