> 数学 >
直线l的参数方程为x=t+1,y=t-1(t为参数),p(x,y)是椭圆x^2/4+y^2=1上的点.求点P到直线l的距离的最大值
人气:377 ℃ 时间:2020-05-02 14:39:46
解答

∵线l的参数方程为x=t+1,y=t-1
∴直线l方程为x-y-2=0
设点P坐标为(2cosθ,sinθ)则点P到直线l的距离为 (θ∈[0,2π])
|2cosθ-sinθ-2|/√2=|√5cos(θ+ξ)-2|/√2 (ξ为辅角)
当cos(θ+ξ)=-1时 距离最大值为(√5+2)/√2=(√10+2√2)/2
∴P到直线l的距离的最大值是(√10+2√2)/2
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版