设方程2x2-4nx-2n=1的两根为x1,x2,变形方程得到方程2x2-4nx-2n-1=0,
x1+x2=2n,x1•x2=-
2n+1 |
2 |
∴x12+x22=(x1+x2)2-2x1x2=4n2+2n+1,
对于方程x2-(3n-1)x+2n2-3n-2=0,△=(3n-1)2-4(2n2-3n-2)=n2+6n+9=(n+3)2,
∴x=
3n−1±
| ||
2 |
当4n2+2n+1=2n+1,解得n=0;
当4n2+2n+1=n-2,整理得4n2+n+3=0,△<0,方程无解,
∴n的值为0.
2n+1 |
2 |
3n−1±
| ||
2 |