∵∠ADF+∠ABC=180°,且∠ABE+∠ABC=180°,
∴∠ADF=∠ABE,且A,B,C,D四点共圆,
又∠ACD=60°,
∴∠ABD=∠ACD=60°,又AB=AD,
∴△ABD是等边三角形,
∴∠BAD=60°,
∴∠EAF=∠EAB+∠BAF,∠BAD=∠FAD+∠BAF,
∴∠EAF=∠BAD=60°,
∴∠EAC=180°-60°=120°,
∴∠AEC=60°,
∴S△AEC=
1 |
2 |
1 |
2 |
| ||
8 |
同理S△AFC=
| ||
8 |
在△ABE与△ADF中,
∵∠ADF=∠ABE,AB=AD,∠AEB=∠AFD,
∴△AEB≌△AFD,
∴S四边形ABCD=S四边形AECF=S△AEC+S△AFC=
| ||
8 |
| ||
8 |
| ||
4 |
故答案为:
| ||
4 |