∴∠BAC+∠EAC=∠DAE+∠EAC.
∴∠EAB=∠DAC①;
又∵∠AEB=∠DAE+∠BDA=∠BDC+∠BDA,
∴∠AEB=∠ADC②;
由①和②得△AEB∽△ADC.
∴
| BE |
| DC |
| AE |
| AD |
(2)猜想:
| BC |
| DE |
| AC |
| AD |
| BC |
| DE |
| AB |
| AE |
证明:∵△AEB∽△ADC,
∴
| AB |
| AE |
| AC |
| AD |
∵∠BAC=∠DAE,
∴△BAC∽△EAD.
∴
| BC |
| ED |
| AC |
| AD |
| AB |
| AE |

| BC |
| DE |
| BE |
| DC |
| AE |
| AD |
| BC |
| DE |
| AC |
| AD |
| BC |
| DE |
| AB |
| AE |
| AB |
| AE |
| AC |
| AD |
| BC |
| ED |
| AC |
| AD |
| AB |
| AE |