设方程组的系数矩阵为A=[aij]n*n,且行列式|A|=0,而|A|中某一元素aij的代数余子式Aij不等于0,证明,方程组的通解可表示为k[Ai1,Ai2,...,Ain]的转置,其中k为任意常数
人气:480 ℃ 时间:2019-08-22 10:19:06
解答
因为Aij不等于0,所以r(A)=n-1,AX=0的解的线性无关的个数为n-r(A)=1
又因为AA*=|A|E=0,所以A*的列向量都是AX=0的解,
所以方程组的通解可表示为k[Ai1,Ai2,...,Ain]的转置,其中k为任意常数
推荐
- 设A=(aij)mn是正交矩阵,且A的行列式大于零,Aij是aij的代数余子式(i,j=1,2….,n),证明:Aij=aij,i
- 设A=(aij)3*3为非零实矩阵,aij=Aij,Aij 是行列式|A|中元素aij的代数余子式,则行列式|A
- 设A=(aij)nxn是正交矩阵,且A的行列式大于零,Aij是aij的代数余子式(i,j=1,2,.n),证明:Aij=aij,i,j=1,2,
- 矩阵的题.Aij三阶非零矩阵,如果代数余子式Aij=aij ,求 对A 取行列式的...
- n阶行列式D=/Aij/的任意一列(行)各元素与另一列(行)对应元素的代数余子式的乘积之和等于零.如何证明
- 夏天的特点
- 写出一个系数是-2,只含有字母AB的四次单项式.
- 利用凝固放热,溶化吸热的生活例子
猜你喜欢