>
数学
>
在区间[0,1]上任意取两个实数a,b,则函数
f(x)=
1
2
x
3
+ax−b
在区间[-1,1]上有且仅有一个零点的概率为( )
A.
1
8
B.
1
4
C.
3
4
D.
7
8
人气:100 ℃ 时间:2019-10-17 05:35:21
解答
解析:函数f(x)=12x3+ax−b在区间[-1,1]上有且仅有一个零点,所以f(-1)f(1)<0,即b2<(a+12)2,也就是b<a+12,故a,b满足0≤a≤10≤b≤1a−b+12>0图中阴影部分的面积为S1=1−12×12×12=78所以,函数f(x)...
推荐
在区间[0,1]上任意取两个实数a,b,则函数f(x)=12x3+ax−b在区间[-1,1]上有且仅有一个零点的概率为( ) A.18 B.14 C.34 D.78
在区间[0,1]任取两个实数a,b,则函数f(x)=(-1/2)x2-ax+b在区间[-1,1]上有且仅有一个零点的概率?
在区间[0,1]上任意取两个实数a,b,则函数f(x)=12x3+ax−b在区间[-1,1]上有且仅有一个零点的概率为( ) A.18 B.14 C.34 D.78
在区间[0,1]上任意取两个实数a,b,则函数f(x)=12x3+ax−b在区间[-1,1]上有且仅有一个零点的概率为( ) A.18 B.14 C.34 D.78
函数f(x)=2x−2/x−a的一个零点在区间(1,2)内,则实数a的取值范围是_.
Private cars have made the traffic problems ___ A the worse than before B worse than ever before...
如图所示,AC为⊙O的直径且PA⊥AC,BC是⊙O的一条弦,直线PB交直线AC于点D,且DB/DP=DC/DO=2/3. (1)求证:直线PB是⊙O的切线; (2)求tan∠PDA的值.
e^(-t*t/2)的原导数
猜你喜欢
“种树者必培其根,种德者必养其心”的意思
英文影片观后感
一般现在失态的陈述句中,如果句子的主语是第三人称单数,其谓语动词就加——or——(注意词尾变化规则
如图,在Rt三角形ABC中,∠ACB=90,CD⊥AB,若BC=根号10,tan∠BCD=1/3.求BD和AC的值
Hi Mary.Here's a letter ___you.Who is it___?
一个两位数,十位数字是个位数字的2倍,如果把十位数字和个位数字对调所得的两位数比原来小18,求原来的两位数.
初二数学 找规律题
7x-6.5x=24.5 5.4+4.6×3.5
© 2025 79432.Com All Rights Reserved.
电脑版
|
手机版