a |
2 |
此时f(x)=x−
4 |
x |
4 |
x |
(Ⅱ)函数g(x)=lg[f(x)+2x-m]在区间[2,3]上有意义,即x−
4 |
x |
4 |
x |
令h(x)=x−
4 |
x |
任取2≤x1<x2≤3,
则h(x2)−h(x1)=x2−
4 |
x2 |
4 |
x1 |
(x2−x1)(x1x2+4) |
x1x2 |

故h(x)在x∈[2,3]递增,
则h(x)=x−
4 |
x |
(III)设y1=|f(x)|,y2=t+4x-x2
结合图象得:
①当t<-4时,正根的个数为0;
②当t=-4时,正根的个数为1;
③当t>-4时,正根的个数为2.