>
数学
>
怎样证明 根3 是无理数
人气:249 ℃ 时间:2020-02-04 08:22:22
解答
有理数可分为整数和分数.
显然,根3不是整数,则只需证明根3不是分数即可.
假设根3是分数,则根3=p/q,且p、q互质,
两边平方,得(p^2)/(q^2)=3,则p^2=3q^2.
则3|p^2(p^2能被3整除),则3|p.
则9|p^2,即3|q^2.
同理,3|q.
则3|p,3|q,则p、q有公约数3,与假设矛盾.
故根3不是分数,
故根3不是有理数,是无理数.
推荐
证明 2的3次根是无理数.
证明:√3+√2一定是无理数.
如何证明根二是无理数
怎样证明n^(1/3)是无理数
证明1+根2是无理数
watch(第三人称单数)( )
流星拖着一条发光的尾巴是什么能转化什么能
聿可以加什么偏旁
猜你喜欢
有机化学中的质子转移和质子交换分别是什么?遇到题目如何区分?请具体解释,
浅谈初中英语如何进行写作教学
英语翻译
氨根离子里的氮元素是几价啊?+3还是—3,黄绿色气体都有什么啊?
解不等式 3分之2x-1-6分之9x+2≤1
证明:函数F(x)=3x+2在(—∞,+∞)上是增函数
单缝的衍射条纹与双缝的干涉条纹有什么区别和联系
问:但我不确定,物理比较差.
© 2024 79432.Com All Rights Reserved.
电脑版
|
手机版