求由曲线x=1-2y^2与直线y=x所围城的平面图形的面积
高数问题
人气:497 ℃ 时间:2019-12-09 01:19:05
解答
x=1-2y^2与直线y=x联立得
y=1-2y^2
2y^2+y-1=0
(2y-1)(y+1)=0
y=1/2,y=-1
x=1/2,x=-1
化为定积分得
∫[-1,1/2] (1-2y^2-y)dy
=(y-2y^3/3-y^2/2)[-1,1/2]
=1/2-1/12-1/8+1-2/3+1/2
=9/8求y=x^3,x=1及x轴所围图形绕y轴而形成的旋转体积y=x^3,x=1交点是(0,0)(1,1)体积=π*1^2*1-∫[0,1] π(x^3)^2dx=π-π(x^6)[0,1] =5π/6
推荐
猜你喜欢
- 采蒲台的苇 中四十多岁的男子牺牲后,作者突出描写他的血,有什么作用
- 做个好梦英语口语怎么说
- 唱歌跳舞用英语怎么说
- 2,8,18,32,52的规律
- 已知∠AOB=90°,OC是它的一条三等分线,则∠AOC等于( )
- look at the pictures and answer the question.
- 3.饲养场养鸡、鸭、鹅的只数比是4:3:2,这个饲养场养的鸡比鹅多240只,这个饲养场共养鸡、鸭、鹅各多少
- 找出错误 please write down it