若函数f(x)在x=0处连续,且lim(f(x)/x)存在,试问函数f(x)在点x=0处是否可导
人气:261 ℃ 时间:2019-08-17 13:47:41
解答
因为 lim(f(x)/x)存在 所以当(x->0) 时 limf(x)=0 (同阶无穷小)
又因为f(x)在x=0处连续 所以f(0)=0 (函数连续的定义)
所以:f'(0)=lim[f(x)-f(0)]/(x-0)=lim[f(x)/x] (x->0) (用定义式求导数)
所以存在 并且 f'(0)= lim[f(x)/x] (x->0)
推荐
- 设函数f(x)在x=0连续,若x趋于0时,lim f(x)/x存在,则f'(0)=多少?
- 全部题目是 设函数f在[0,+∞]上具有连续的导函数,且lim(x→+∞)f'(x)存在有限,0
- 证明:若函数f(x)在x=0上连续,在(0,&)内可导,且当x趋向于0+时,lim f ' (x)=A.则f+'(x)存在且等于A.
- 设函数f(x)在(0,1]内连续可导,且lim(x趋向于0+)(√x)f`(x)存在,证明f(x)在(0,1]内一致连续
- 证明:若x→+∞及x→-∞时,函数f(x)的极限都存在且都等于A,则lim x→∞f(x)=A
- 苟富贵 勿相忘 这句话是陈胜在什么样的情况下说的
- 一个等腰三角形的一条边长30厘米,另一条的长度与该边的比是1:3.这个三角形的周长是多少厘米?
- 把48块巧克力和41块奶糖平均分给一个组的同学,结果巧克力剩3块糖剩1块,你知道这个组最多有几个同学吗?
猜你喜欢